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2.Abstract

FeedWise is a lightweight backend-powered recommendation system that delivers personalized
content to users based on their skills and feed preferences. Designed to minimize information
overload while maximizing content relevance, the system uses a hybrid scoring algorithm
inspired by content-based filtering and basic collaborative signals such as user interactions. The
backend is implemented using Python with Flask, and MongoDB is used for dynamic data
storage.

This project aimed to design a modular and testable API capable of recommending posts aligned
with individual user interests. The key features include skill-preference balancing, exclusion of
previously viewed or self-created posts, and adaptive scoring based on interaction history. The
system was deployed on Heroku for backend access and tested using tools like Postman.

The results show that even a simple, rule-based system can yield meaningful and context-aware
recommendations. Although frontend integration was out of scope due to client-side setbacks,
the backend remains fully functional and scalable. Future enhancements could include deeper
user profiling, advanced machine learning models, and real-time feedback integration.
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6. Introduction

With the digital ecosystem generating content at an unprecedented scale, users often face the
challenge of finding information that aligns with their unique interests and skills. Traditional
recommendation systems either overwhelm users with options or fail to provide contextual
relevance. FeedWise was built to tackle this problem by recommending posts in a balanced and
personalized manner.

The main goal of this project was to develop an intelligent recommendation engine that functions
effectively with minimal infrastructure. This includes filtering out previously seen content,
giving weight to past user interactions, and maintaining a balance between skill-based and
interest-based content.



7. Literature Review

Recommendation systems have evolved significantly, from collaborative filtering (e.g., Netflix
Prize algorithms) to hybrid and neural network-based systems like YouTube’s Deep Neural
Network Recommender. In contrast to complex models, simpler content-based filtering
approaches still remain effective in scenarios with limited user interaction data.

Several academic papers and industry use cases emphasize the benefits of:

e Tag-based content filtering (e.g., TF-IDF, cosine similarity)
e (Cold-start handling through profile-based recommendations
e Lightweight systems suitable for early-stage products or personalized apps

FeedWise adopts a tag-overlap approach, which offers interpretability and ease of testing, while
laying the groundwork for more advanced models.



8. Methodology

8.1 Architecture Overview

FeedWise consists of:

e A Flask backend server
e MongoDB database storing user, post, and interaction data
e A recommendation engine module (post_recommendation_sys.py)

8.2 Key Functional Components

e User Profiles: Contain skills and feed preferences
e Posts: Tagged with relevant topics and metadata
e Interactions: Record of user activity (likes, views)

8.3 Recommendation Logic

1. Fetch user’s profile and interaction history.
2. Filter out posts:
o Already viewed or liked
o Created by the same user
3. Calculate tag-matching scores for remaining posts.
4. Score is boosted if previously liked tags are found.
5. Separate into two pools:
o Skill-based recommendations
o Feed-preference-based recommendations
6. Combine and return top K results based on relevance.

8.4 Deployment

e Backend hosted on Heroku.
e Tested via Postman using sample dummy data (test_data.py).



9. Results

Performance Overview

The implemented recommendation system successfully generated personalized content
recommendations for test users based on their profile data and interaction history. Key
performance indicators include:

o Contextual Relevance: Recommendations accurately reflected users' skills and
preferences

e Balanced Distribution: Maintained equilibrium between skill-based and
preference-based recommendations

e Detailed Logging: Captured comprehensive metrics for each recommendation including
title, matching score, and tag relevance

o Response Time: Achieved sub-500ms average API response time when deployed on
Heroku

Sample Recommendation Output

Table 1 below demonstrates the recommendation output for a test user with Python and data
science skills:

Post Title Matching Type Score Tags
Python Basics Skill-based 12 python, beginner
Al in Education Preference 9 ai, edtech, research
Cloud Infrastructure Best Practices  Interaction-based 6 devops, aws,

cloud-computing

Algorithm Effectiveness

The hybrid recommendation approach demonstrated several strengths:



1. Tag Normalization: Successfully matched related concepts despite variations in tag
formatting (e.g., "data-science" and "data science")

2. Multi-dimensional Scoring: Effectively combined direct skill matches (weighted at 5x
per match), preference matches (5% per match), and interaction history (3% per tag match
with previously liked content)

3. Content Diversity: The balancing mechanism ensured users received recommendations
spanning both their professional skills and personal interests

Scalability

Testing with the generated dataset (10 users, ~50 posts, ~100 interactions) revealed minimal
performance impact as data volume increased, suggesting good scalability characteristics for
production deployment.
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10. Discussion

The outcomes demonstrate that even with a minimal dataset and simple matching logic,
meaningful recommendations can be generated. While the current system lacks deep
personalization (e.g., embeddings, user sequence models), its transparency and predictability are
strengths. The recommendation split (skills vs. preferences) adds diversity, which is often
missing in purely collaborative models.

Future iterations could explore:

e Embedding-based similarity (e.g., Word2Vec on tags)
e User feedback loop (click-through, skip)
e Fine-tuned hybrid ranking using XGBoost or LightGBM

11



11. Conclusion and Recommendations

FeedWise proved to be a successful prototype that meets the goal of personal content delivery
using efficient backend design. The project highlights how a practical recommendation system
can be implemented without requiring massive computational resources. Going forward,
integrating real-time interactions and ML-based personalization can turn this system into a

scalable product.
Recommendations:

e Include real user feedback for continuous learning
e Apply NLP for richer tag analysis
e Design a responsive frontend for full-stack usability
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14. Project Snapshots & Code

Backend Code:

&« O rec-sys-v1 3

EXPLORER readme.md @ post_recommendation_system.py X [ ---

v REC-SYS-V1 @p commendation_system.py ® .gitignore

> B __pycact

v @ assets KNN-based post recommendation s em that 7pyiac2<]zi/
° *.py[co

I image.png *$py.class

€2 controllers import numpy as np

> 19 ache, from sklearn.neighbors import NearestNeight
@ auth_controller.py from sklearn.preprocessing import Multilabe
™ reELEEE from bson import ObjectId
POS i import re
@ profile_controller.py .Python
® middleware build/

v & models from mongo_helper import posts_collection, develop-eggs/

@ interaction.py dist/

def normalize_tag(tag): downloads/
) [ 3 b ormali a tag by removing spleclal eggs/
e user_profile.py if not tag e

@ user.py return " lib/
routes PROBLEMS ~ OUTPUT  TERMINAL P

> v TERMINAL

%
|
styey £ 0 T522519: rec-sys-
g ys-v1l ssharma33$ python3 app.py

® .gitignore Connecting to MongoDB...

# Pinged your deployment. You successfully connected to MongoDB!
e app.py W@ Database connection established and indexes created.
@ connect.py Connecting to MongoDB...
Connected to MongoDB
@ mongo_helper.py * Serving Flask app 'app'

i * Debug mode: on

:l post_recommendation_system.py TNEOTe TRzl
proj-st.sh
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:5000
B requirements.txt * Running on http://10.15.60.36:5000
INFO:werkzeug:Press CTRL+C to quit
INFO:werkzeug: * Restarting with stat
Connecting to MongoDB...
@ Pinged your deployment. You successfully connected to MongoDB!
@ Database connection established and indexes created.
Connecting to MongoDB...
Connected to MongoDB
> OUTLINE WARNING:werkzeug: * Debugger is active!
éNFO:werkzeug: * Debugger PIN: 816-905-239

readme.md

e test_data.py

> TIMELINE

O Sundar Raj Sharma (2 days ago) Ln 15, Col 38 Spaces:4 UTF-8 LF {} Python @ Go Live _

Skill matches: 1, Preference matches: 1
INFO:werkzeug:127.0.0.1 - - [19/Apr/2025 02:47:22] "GET /api/posts/ HTTP/1.1" 200 -
erkzeug:127.0.0.1 - — [19/Apr/2025 02:47:36] "OPTIONS /api/posts/67ff076a71la7aa347f013b33/1ike HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - — [19/Apr/2025 02:47:36] "POST /api/posts/67ff@76a71a7aa347f013b33/1ike HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [19/Apr/2025 02:47:39] "OPTIONS /api/posts/ HTTP/1.1" 200 -

User skills: ['programming', 'data science', 'web dev', 'communication', 'cloud-computing']
User preferences: ['Devops', 'Uiux', 'Ml', 'data science'l

Recommended posts:

- 'Cloud Infrastructure Best Practices #1' (Tags: ['devops', 'aws', 'docker', 'cloud-computing'l, Score: 22)
Skill matches: 1, Preference matches: 1
'Node. js Performance Optimization #1' (Tags: ['nodejs', 'data-science', 'desig 'programming', 'security'l, Score: 15)
Skill matches: 2, Preference matches: 1
'Mobile App Development with React Native #4' (Tags: ['django', ‘'databases', 'data-science', 'cloud-computing', 'docker'], Score: 15)
Skill matches: 2, Preference matches: 1
'Python Best Practices for Beginners #2' (Tags: ['data-science', 'programming', ‘'artificial-intelligence'l], Score: 15)
Skill matches: 2, Preference matches: 1
'Modern JavaScript Features #5' (Tags: ['data-science', 'databases', 'flask', 'cloud-computing'l, Score: 15)
Skill matches: 2, Preference matches: 1
'Advanced Python for Data Science #1' (Tags: ['python', 'data-science', 'machine-learning', 'tutorials'l], Score: 10)
Skill matches: 1, Preference matches: 1
'Advanced Python for Data Science #2' (Tags: ['python', 'data-science', 'machine-learning', 'tutorials'l, Score: 10)
Skill matches: 1, Preference matches: 1
'Advanced Python for Data Science #3' (Tags: ['python', 'data-science', 'machine-learning', 'tutorials'l], Score: 10)
Skill matches: 1, Preference matches: 1
'Building RESTful APIs with Flask #3' (Tags: ['data-science', 'machine-learning'l, Score: 10)
Skill matches: 1, Preference matches: 1
'Cloud Infrastructure Best Practices #2' (Tags: ['devops', 'aws', 'docker', 'cloud-computing'l, Score: 10)
Skill matches: 1, Preference matches: 1

INFO:werkzeug:127.0.0.1 - - [19/Apr/2025 02:47:39] "“GET /api/posts/ HTTP/1.1" 200 -

15



post_recomendation.py

recommendation system that balances user skills and preferences

import numpy as np

from sklearn.neighbors import NearestNeighbors

from sklearn.preprocessing import MultilabelBinarizer
from bson import ObjectId

import re

from mongo helper import posts collection, interactions collection,

user profiles collection

normalize tag(tag):
"""Normalize a tag by removing special characters and converting to lowercase"""
if tag:

return ""

normalized = re.sub( [ \- ] , tag.lower ())

return normalized

get recommended posts (user id, 1limit=10):

wwn

Generate balanced post recommendations based on user skills and preferences

user id: User ID to generate recommendations for (string or ObjectId)

limit: Number of posts to recommend

Returns:
List of recommended post IDs as strings

won

user id obj = ObjectId(user id) if isinstance(user id, str) else user id

user profile = user profiles collection.find one ({"user": user id obj})




",

user interactions = list(interactions collection.find({"user user id obj}))

user profile:

return []

skills = [normalize tag(skill) for skill in user profile.get('skills', [])]

preferences = [normalize tag(pref) for pref in user profile.get ('feedPreferences',

(1)]

viewed post ids

view'}

candidate posts = list(posts collection.find ({

"user": {"Sne": user id obj},

" id": {"S$nin": list (viewed post ids)}

candidate posts:

return []

post scores = []
for post in candidate posts:
post id = post[' id']
post tags = [normalize tag(tag) for tag in post.get('tags'

skill matches = sum(1l for skill in skills if any(skill in tag or tag in skill
for tag in post tags))
pref matches = sum(l for pref in preferences if any(pref in tag or tag in pref

for tag in post tags))

directiscore = (Skillimatches * 5) + (pref matches * 5)

interaction score = 0




for interaction in user interactions:

if interaction['post'] == post id interaction['interactionType'] ==

liked post = posts collection.find one({" id": interaction['post']})

if liked post:

liked tags = [normalize tag(tag) for tag in liked post.get ('tags

tag matches = sum(l for tag in post tags if tag in liked tags)

interaction score += tag matches * 3

total score = direct score + interaction score

post scores.append ({
'id': post id,
'score': total score,
'skill matches': skill matches,
'pref matches': pref matches,
'tags': post.get('tags', []),

'title': post.get('title',

post scores.sort (key= X: X['score'], reverse=

final recommendations = []
skill related = []

pref related = []

for post in post scores:
if post['skill matches'] > 0:
skill related.append (post)
if post['pref matches'] > 0:

pref related.append (post)

if skills preferences skill related pref related:




skill count = min(limit // 2, len(skill related))

pref count = min(limit - skill count, len(pref related))

for 1 in range(skill count) :
if skill related[i]['id'] [p['id'] for p in final recommendations]:

final recommendations.append(skill related[i])

for i in range (pref count):
if pref related[i] ['id'] [p['id'] for p in final recommendations]:

final recommendations.append (pref related[i])

remaining count = limit - len(final recommendations)
if remaining count > 0:
for post in post scores:
if post['id'] [p('id'] for p in final recommendations]:
final recommendations.append (post)
remaining count -= 1
if remaining count == 0:

break

final recommendations.sort (key= X: X['score'], reverse=

recommended post ids = [str(post['id']) for post in final recommendations[:limit]]

print (f"\nUser skills: {user profile.get('skills', [])}")

print (f"User preferences: {user profile.get ('feedPreferences', [])}")

print ("\nRecommended posts:")

for post in final recommendations[:1limit]:
print (f"- '{post['title']}' (Tags: post['tags']}, Score: post['score']l})")
print (f" Skill matches: {post['skill matches']}, Preference matches:

post['pref matches']}")

return recommended post ids

Clilent Ul Snapshots:




FeedWise Data Science Project

Hosted Link: https://mcisysusrs25.qgithub.io/post-recom-system/

Features Tech Stack How It Works

Project Docs

Data Science and Machine Learning, CSCI.6951.21452.2025.Spring

FeedWise: Personalized Post
Recommendation System

Computer Project 1 - Part 3: Project Presentation

An advanced recommendation system that uses machine learning algorithms to suggest
posts based on user profiles, preferences, and peer suggestions.

Key Features

Discover how FeedWise enhances your content discovery experience

00/index.html|

FeedWise Data Science Project

)

Personalized
Recommendations

Get content suggestions tailored to your
unique profile, skills, and preferences
using advanced similarity matching
algorithms.

|~

Dynamic Learning

The system improves over time by
learning from your interactions and
continuously refining its
recommendation model.

Features Tech Stack How It Works

Peer-Based Suggestions

Discover posts that similar users found
valuable, expanding your content
discovery through collective
intelligence.

®

Tag-Based Matching

Sophisticated tag matching ensures you
discover content that aligns with your
interests and professional skills.
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Project Docs

Finish update

KNN Algorithm

Our system uses K-Nearest Neighbors
to find and recommend the most
relevant content based on multiple
similarity factors.

3

Weighted Scoring System

Our algorithm uses a balanced
approach that prioritizes different
aspects of content relevance for better
recommendations.


https://mcisysusrs25.github.io/post-recom-system/

FeedWise Data Science Project Features Tech Stack How It Works Project Docs

Technology Stack

Built with powerful, modern technologies for efficient recommendation
processing

® a — L

Python Flask MongoDB scikit-learn
Core programming Backend API NoSQL database ML algorithms
language framework

B = 5| 3]

Pandas Matplotlib HTML css

Data manipulation Data visualization Frontend structure Frontend styling

FeedWise patascience Project Features Tech Stack How It Works ~Project Docs

How It Works

Understanding the intelligence behind your recommendations

KNN Algorithm & Similarity Matching

The K-Nearest Neighbors (KNN) algorithm is at the heart of our recommendation system. Here's how it works:

« Profile Vectorization: User profiles and post content are converted into numerical vectors.

Finish update

=]

NumPy

Numerical
computing

JavaScript

Frontend
interactivity

Finish update

« Similarity Calculation: We use mathematical methods (like cosine similarity) to measure how similar profiles are to each other.

« Nearest Neighbors: For each user, we identify the "K" most similar users based on profile data.

« Content Matching: We recommend posts that these similar users engaged with positively.

Our system also directly matches user skills and preferences with post tags, assigning different weights to create balanced recommendations:

Weighted Scoring System
« Skills matches: 5 points per match
« Preferences matches: 5 points per match

« Interaction-based matches: 3 points per match

This ensures you receive recommendations that are relevant to both your professional profile and personal interests.
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FeedWise Data Science Project Features Tech Stack How It Works Project Docs

Register

Project Documentation

Academic foundation and technical implementation

CSCI 6951: Project Plan

Post Recommendation System Using Similarity Matching, Peer Suggestions, and KNN Algorithm
Team Members - Sundar Raj Sharma (Solo)

1. Introduction

The Post Recommendation System aims to provide personalized post suggestions to users based on profile similarity scores, preferences, and
peer suggestions. It utilizes similarity matching and the K-Nearest Neighbors (KNN) algorithm to analyze user profiles and recommend relevant
posts shared over the network.

2. Objectives

« Implement a recommendation system that matches user preferences with relevant posts.
« Use similarity scores to enhance personalized recommendations.

« Leverage KNN to improve accuracy in user-based recommendations.

« Provide peer-based suggestions by analyzing common user interests.

Finish update

FeedWise patascience Project Features Tech Stack How It Works ~Project Docs

« sklearn.preprocessing.MultilabelBinarizer: For encoding tags into vectors
« numpy: For numerical operations on tag vectors

« Standard Python libraries for string manipulation and time calculations

8. Conclusion

This project enhances content discovery through an intelligent recommendation system that adapts to user preferences dynamically,
improving engagement and personalization. The backend-driven system relies on Python scripts to generate and analyze recommendations,
utilizing database-driven data input and API-based testing methods.

FeedWise Quick Links Contact
An advanced post recommendation system Features ssharma33@student.ysu.edu
using the KNN algorithm and similarity matching Tech Stack University Research Lab
to enhance content discovery. .
How It Works Computer Science Department
(w] m L 4 Project Docs

© 2025 FeedWise - Academic Project | Created by Sundar Raj Sharma
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Sundar Raj Sharma
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sundar@feedwise.app
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[ |
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(No posts)

No posts available. Create your first post!
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Enter your occupation
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Type skills and press Enter

reate Profile
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Sundar raj Sharma

Age

27
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Student

Feed Preferences

Type preferences and press Enter
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e User
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