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2.Abstract 

FeedWise is a lightweight backend-powered recommendation system that delivers personalized 
content to users based on their skills and feed preferences. Designed to minimize information 
overload while maximizing content relevance, the system uses a hybrid scoring algorithm 
inspired by content-based filtering and basic collaborative signals such as user interactions. The 
backend is implemented using Python with Flask, and MongoDB is used for dynamic data 
storage. 

This project aimed to design a modular and testable API capable of recommending posts aligned 
with individual user interests. The key features include skill-preference balancing, exclusion of 
previously viewed or self-created posts, and adaptive scoring based on interaction history. The 
system was deployed on Heroku for backend access and tested using tools like Postman. 

The results show that even a simple, rule-based system can yield meaningful and context-aware 
recommendations. Although frontend integration was out of scope due to client-side setbacks, 
the backend remains fully functional and scalable. Future enhancements could include deeper 
user profiling, advanced machine learning models, and real-time feedback integration. 
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6. Introduction 

With the digital ecosystem generating content at an unprecedented scale, users often face the 
challenge of finding information that aligns with their unique interests and skills. Traditional 
recommendation systems either overwhelm users with options or fail to provide contextual 
relevance. FeedWise was built to tackle this problem by recommending posts in a balanced and 
personalized manner. 

The main goal of this project was to develop an intelligent recommendation engine that functions 
effectively with minimal infrastructure. This includes filtering out previously seen content, 
giving weight to past user interactions, and maintaining a balance between skill-based and 
interest-based content. 
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7. Literature Review 

Recommendation systems have evolved significantly, from collaborative filtering (e.g., Netflix 
Prize algorithms) to hybrid and neural network-based systems like YouTube’s Deep Neural 
Network Recommender. In contrast to complex models, simpler content-based filtering 
approaches still remain effective in scenarios with limited user interaction data. 

Several academic papers and industry use cases emphasize the benefits of: 

●​ Tag-based content filtering (e.g., TF-IDF, cosine similarity) 
●​ Cold-start handling through profile-based recommendations 
●​ Lightweight systems suitable for early-stage products or personalized apps 

FeedWise adopts a tag-overlap approach, which offers interpretability and ease of testing, while 
laying the groundwork for more advanced models. 
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8. Methodology 

8.1 Architecture Overview 

FeedWise consists of: 

●​ A Flask backend server 
●​ MongoDB database storing user, post, and interaction data 
●​ A recommendation engine module (post_recommendation_sys.py) 

8.2 Key Functional Components 

●​ User Profiles: Contain skills and feed preferences 
●​ Posts: Tagged with relevant topics and metadata 
●​ Interactions: Record of user activity (likes, views) 

8.3 Recommendation Logic 

1.​ Fetch user’s profile and interaction history. 
2.​ Filter out posts: 

○​ Already viewed or liked 
○​ Created by the same user 

3.​ Calculate tag-matching scores for remaining posts. 
4.​ Score is boosted if previously liked tags are found. 
5.​ Separate into two pools: 

○​ Skill-based recommendations 
○​ Feed-preference-based recommendations 

6.​ Combine and return top K results based on relevance. 

8.4 Deployment 

●​ Backend hosted on Heroku. 
●​ Tested via Postman using sample dummy data (test_data.py). 
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9. Results 

Performance Overview 

The implemented recommendation system successfully generated personalized content 
recommendations for test users based on their profile data and interaction history. Key 
performance indicators include: 

●​ Contextual Relevance: Recommendations accurately reflected users' skills and 
preferences 

●​ Balanced Distribution: Maintained equilibrium between skill-based and 
preference-based recommendations 

●​ Detailed Logging: Captured comprehensive metrics for each recommendation including 
title, matching score, and tag relevance 

●​ Response Time: Achieved sub-500ms average API response time when deployed on 
Heroku 

Sample Recommendation Output 

Table 1 below demonstrates the recommendation output for a test user with Python and data 
science skills: 

Post Title Matching Type Score Tags 

Python Basics Skill-based 12 python, beginner 

AI in Education Preference 9 ai, edtech, research 

Cloud Infrastructure Best Practices Interaction-based 6 devops, aws, 
cloud-computing 

Algorithm Effectiveness 

The hybrid recommendation approach demonstrated several strengths: 
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1.​ Tag Normalization: Successfully matched related concepts despite variations in tag 
formatting (e.g., "data-science" and "data science") 

2.​ Multi-dimensional Scoring: Effectively combined direct skill matches (weighted at 5× 
per match), preference matches (5× per match), and interaction history (3× per tag match 
with previously liked content) 

3.​ Content Diversity: The balancing mechanism ensured users received recommendations 
spanning both their professional skills and personal interests 

 

 

Scalability 

Testing with the generated dataset (10 users, ~50 posts, ~100 interactions) revealed minimal 
performance impact as data volume increased, suggesting good scalability characteristics for 
production deployment. 
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10. Discussion 

The outcomes demonstrate that even with a minimal dataset and simple matching logic, 
meaningful recommendations can be generated. While the current system lacks deep 
personalization (e.g., embeddings, user sequence models), its transparency and predictability are 
strengths. The recommendation split (skills vs. preferences) adds diversity, which is often 
missing in purely collaborative models. 

Future iterations could explore: 

●​ Embedding-based similarity (e.g., Word2Vec on tags) 
●​ User feedback loop (click-through, skip) 
●​ Fine-tuned hybrid ranking using XGBoost or LightGBM 
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11. Conclusion and Recommendations 

FeedWise proved to be a successful prototype that meets the goal of personal content delivery 
using efficient backend design. The project highlights how a practical recommendation system 
can be implemented without requiring massive computational resources. Going forward, 
integrating real-time interactions and ML-based personalization can turn this system into a 
scalable product. 

Recommendations: 

●​ Include real user feedback for continuous learning 
●​ Apply NLP for richer tag analysis 
●​ Design a responsive frontend for full-stack usability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 



Data Science and Machine Learning 

12. References 

●​ Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook. Springer. 
●​ Netflix Prize (2009). https://netflixprize.com 
●​ Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep Learning based Recommender 

System: A Survey and New Perspectives. ACM Computing Surveys. 
●​ Official Flask Documentation – https://flask.palletsprojects.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 

https://netflixprize.com/


Data Science and Machine Learning 

13. Appendices 

Appendix A – Folder Structure Diagram​
Appendix B – Sample API Response JSON​
Appendix C – Dummy Test Data Used (test_data.py)​
Appendix D – Heroku Logs of Recommendation Requests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 



Data Science and Machine Learning 

14. Project Snapshots & Code 
 
Backend Code: 
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post_recomendation.py 
 
""" 

KNN-based post recommendation system that balances user skills and preferences 

""" 

 

import numpy as np 

from sklearn.neighbors import NearestNeighbors 

from sklearn.preprocessing import MultiLabelBinarizer 

from bson import ObjectId 

import re 

 

# Import MongoDB collections 

from mongo_helper import posts_collection, interactions_collection, 

user_profiles_collection 

 

def normalize_tag(tag): 

   """Normalize a tag by removing special characters and converting to lowercase""" 

   if not tag: 

       return "" 

   # Replace special characters with spaces and convert to lowercase 

   normalized = re.sub(r'[_\-/\s+]', '', tag.lower()) 

   return normalized 

 

def get_recommended_posts(user_id, limit=10): 

   """ 

   Generate balanced post recommendations based on user skills and preferences 

   

   Args: 

       user_id: User ID to generate recommendations for (string or ObjectId) 

       limit: Number of posts to recommend 

       

   Returns: 

       List of recommended post IDs as strings 

   """ 

   user_id_obj = ObjectId(user_id) if isinstance(user_id, str) else user_id 

   

   # 1. Get user profile and interactions 

   user_profile = user_profiles_collection.find_one({"user": user_id_obj}) 
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   user_interactions = list(interactions_collection.find({"user": user_id_obj})) 

   

   # If no user profile, return empty list 

   if not user_profile: 

       return [] 

   

   # 2. Extract user skills and preferences 

   skills = [normalize_tag(skill) for skill in user_profile.get('skills', [])] 

   preferences = [normalize_tag(pref) for pref in user_profile.get('feedPreferences', 

[])] 

   

   # 3. Get posts the user has already viewed 

   viewed_post_ids = {i['post'] for i in user_interactions if i['interactionType'] == 

'view'} 

   

   # 4. Get all posts except user's own posts and those already viewed 

   candidate_posts = list(posts_collection.find({ 

       "user": {"$ne": user_id_obj}, 

       "_id": {"$nin": list(viewed_post_ids)} 

   })) 

   

   # If no candidate posts, return empty list 

   if not candidate_posts: 

       return [] 

   

   # 5. Calculate direct tag matches for each post 

   post_scores = [] 

   for post in candidate_posts: 

       post_id = post['_id'] 

       post_tags = [normalize_tag(tag) for tag in post.get('tags', [])] 

       

       # Count matches with skills and preferences 

       skill_matches = sum(1 for skill in skills if any(skill in tag or tag in skill 

for tag in post_tags)) 

       pref_matches = sum(1 for pref in preferences if any(pref in tag or tag in pref 

for tag in post_tags)) 

       

       # Calculate a direct matching score (higher is better) 

       direct_score = (skill_matches * 5) + (pref_matches * 5) 

       

       # Also check for interaction history (likes) 

       interaction_score = 0 
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       for interaction in user_interactions: 

           if interaction['post'] == post_id and interaction['interactionType'] == 

'like': 

               # Get tags from this liked post to compare with current post 

               liked_post = posts_collection.find_one({"_id": interaction['post']}) 

               if liked_post: 

                   liked_tags = [normalize_tag(tag) for tag in liked_post.get('tags', 

[])] 

                   # Count matching tags between liked post and current post 

                   tag_matches = sum(1 for tag in post_tags if tag in liked_tags) 

                   interaction_score += tag_matches * 3 

       

       # Combine scores 

       total_score = direct_score + interaction_score 

       

       post_scores.append({ 

           'id': post_id, 

           'score': total_score, 

           'skill_matches': skill_matches, 

           'pref_matches': pref_matches, 

           'tags': post.get('tags', []), 

           'title': post.get('title', '') 

       }) 

   

   # 6. Sort posts by score (highest first) 

   post_scores.sort(key=lambda x: x['score'], reverse=True) 

   

   # 7. Ensure we have a balanced mix of recommendations 

   final_recommendations = [] 

   skill_related = [] 

   pref_related = [] 

   

   # Separate posts into skill-related and preference-related 

   for post in post_scores: 

       if post['skill_matches'] > 0: 

           skill_related.append(post) 

       if post['pref_matches'] > 0: 

           pref_related.append(post) 

   

   # If user has both skills and preferences, ensure both are represented 

   if skills and preferences and skill_related and pref_related: 

       # Fill half with skill-related, half with preference-related 
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       skill_count = min(limit // 2, len(skill_related)) 

       pref_count = min(limit - skill_count, len(pref_related)) 

       

       # Add skill-related posts 

       for i in range(skill_count): 

           if skill_related[i]['id'] not in [p['id'] for p in final_recommendations]: 

               final_recommendations.append(skill_related[i]) 

       

       # Add preference-related posts 

       for i in range(pref_count): 

           if pref_related[i]['id'] not in [p['id'] for p in final_recommendations]: 

               final_recommendations.append(pref_related[i]) 

   

   # If we still need more recommendations, add from the remaining top-scored posts 

   remaining_count = limit - len(final_recommendations) 

   if remaining_count > 0: 

       for post in post_scores: 

           if post['id'] not in [p['id'] for p in final_recommendations]: 

               final_recommendations.append(post) 

               remaining_count -= 1 

               if remaining_count == 0: 

                   break 

   

   # 8. Sort final recommendations by score again 

   final_recommendations.sort(key=lambda x: x['score'], reverse=True) 

   

   # 9. Extract post IDs for return 

   recommended_post_ids = [str(post['id']) for post in final_recommendations[:limit]] 

   

   # Print debug info 

   print(f"\nUser skills: {user_profile.get('skills', [])}") 

   print(f"User preferences: {user_profile.get('feedPreferences', [])}") 

   print("\nRecommended posts:") 

   for post in final_recommendations[:limit]: 

       print(f"- '{post['title']}' (Tags: {post['tags']}, Score: {post['score']})") 

       print(f"  Skill matches: {post['skill_matches']}, Preference matches: 

{post['pref_matches']}") 

   

   return recommended_post_ids 

 
Clilent UI Snapshots: 
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Hosted Link: https://mcisysusrs25.github.io/post-recom-system/ 
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