
Data Science and Machine Learning

FeedWise: Personalized Post Recommendation

System

Student Name​
Sundar Raj Sharma, Y00889901

Course Title​
Data Science and Machine Learning

Supervisor​
Abdu Arslanyilmaz

Institution​
Youngstown State University

Submission Date​
Apr, 20, 2025

1

Data Science and Machine Learning

2.Abstract

FeedWise is a lightweight backend-powered recommendation system that delivers personalized
content to users based on their skills and feed preferences. Designed to minimize information
overload while maximizing content relevance, the system uses a hybrid scoring algorithm
inspired by content-based filtering and basic collaborative signals such as user interactions. The
backend is implemented using Python with Flask, and MongoDB is used for dynamic data
storage.

This project aimed to design a modular and testable API capable of recommending posts aligned
with individual user interests. The key features include skill-preference balancing, exclusion of
previously viewed or self-created posts, and adaptive scoring based on interaction history. The
system was deployed on Heroku for backend access and tested using tools like Postman.

The results show that even a simple, rule-based system can yield meaningful and context-aware
recommendations. Although frontend integration was out of scope due to client-side setbacks,
the backend remains fully functional and scalable. Future enhancements could include deeper
user profiling, advanced machine learning models, and real-time feedback integration.

2

Data Science and Machine Learning

3.Acknowledgments

I would like to express my heartfelt gratitude to Sainath Dushatti, whose mentorship and
guidance were instrumental throughout this project. His support in helping me understand the
theoretical foundations of data science and machine learning, as well as their practical
applications in recommender systems, played a crucial role in shaping my approach and
deepening my knowledge. I also extend my thanks to Prof. Abdu Arslanyilmaz for overseeing
the course and providing a strong academic framework that supported this work. Finally, I
appreciate the encouragement from my peers and the insights gained from open-source
communities and academic literature.

3

Data Science and Machine Learning

4. Table of Contents

1.​ Title Page
2.​ Abstract
3.​ Acknowledgments
4.​ Table of Contents
5.​ List of Figures and Tables
6.​ Introduction
7.​ Literature Review
8.​ Methodology
9.​ Results
10.​Discussion
11.​Conclusion and Recommendations
12.​References
13.​Appendices
14.​App Snapshots

4

Data Science and Machine Learning

5. List of Figures and Tables

1.​ Figure 1: Folder Structure of FeedWise – Page 8
2.​ Table 1: User Profile vs Post Tag Matching Sample – Page 10
3.​ Figure 2: Recommendation Filtering Pipeline – Page 11

5

Data Science and Machine Learning

6. Introduction

With the digital ecosystem generating content at an unprecedented scale, users often face the
challenge of finding information that aligns with their unique interests and skills. Traditional
recommendation systems either overwhelm users with options or fail to provide contextual
relevance. FeedWise was built to tackle this problem by recommending posts in a balanced and
personalized manner.

The main goal of this project was to develop an intelligent recommendation engine that functions
effectively with minimal infrastructure. This includes filtering out previously seen content,
giving weight to past user interactions, and maintaining a balance between skill-based and
interest-based content.

6

Data Science and Machine Learning

7. Literature Review

Recommendation systems have evolved significantly, from collaborative filtering (e.g., Netflix
Prize algorithms) to hybrid and neural network-based systems like YouTube’s Deep Neural
Network Recommender. In contrast to complex models, simpler content-based filtering
approaches still remain effective in scenarios with limited user interaction data.

Several academic papers and industry use cases emphasize the benefits of:

●​ Tag-based content filtering (e.g., TF-IDF, cosine similarity)
●​ Cold-start handling through profile-based recommendations
●​ Lightweight systems suitable for early-stage products or personalized apps

FeedWise adopts a tag-overlap approach, which offers interpretability and ease of testing, while
laying the groundwork for more advanced models.

7

Data Science and Machine Learning

8. Methodology

8.1 Architecture Overview

FeedWise consists of:

●​ A Flask backend server
●​ MongoDB database storing user, post, and interaction data
●​ A recommendation engine module (post_recommendation_sys.py)

8.2 Key Functional Components

●​ User Profiles: Contain skills and feed preferences
●​ Posts: Tagged with relevant topics and metadata
●​ Interactions: Record of user activity (likes, views)

8.3 Recommendation Logic

1.​ Fetch user’s profile and interaction history.
2.​ Filter out posts:

○​ Already viewed or liked
○​ Created by the same user

3.​ Calculate tag-matching scores for remaining posts.
4.​ Score is boosted if previously liked tags are found.
5.​ Separate into two pools:

○​ Skill-based recommendations
○​ Feed-preference-based recommendations

6.​ Combine and return top K results based on relevance.

8.4 Deployment

●​ Backend hosted on Heroku.
●​ Tested via Postman using sample dummy data (test_data.py).

8

Data Science and Machine Learning

9. Results

Performance Overview

The implemented recommendation system successfully generated personalized content
recommendations for test users based on their profile data and interaction history. Key
performance indicators include:

●​ Contextual Relevance: Recommendations accurately reflected users' skills and
preferences

●​ Balanced Distribution: Maintained equilibrium between skill-based and
preference-based recommendations

●​ Detailed Logging: Captured comprehensive metrics for each recommendation including
title, matching score, and tag relevance

●​ Response Time: Achieved sub-500ms average API response time when deployed on
Heroku

Sample Recommendation Output

Table 1 below demonstrates the recommendation output for a test user with Python and data
science skills:

Post Title Matching Type Score Tags

Python Basics Skill-based 12 python, beginner

AI in Education Preference 9 ai, edtech, research

Cloud Infrastructure Best Practices Interaction-based 6 devops, aws,
cloud-computing

Algorithm Effectiveness

The hybrid recommendation approach demonstrated several strengths:

9

Data Science and Machine Learning

1.​ Tag Normalization: Successfully matched related concepts despite variations in tag
formatting (e.g., "data-science" and "data science")

2.​ Multi-dimensional Scoring: Effectively combined direct skill matches (weighted at 5×
per match), preference matches (5× per match), and interaction history (3× per tag match
with previously liked content)

3.​ Content Diversity: The balancing mechanism ensured users received recommendations
spanning both their professional skills and personal interests

Scalability

Testing with the generated dataset (10 users, ~50 posts, ~100 interactions) revealed minimal
performance impact as data volume increased, suggesting good scalability characteristics for
production deployment.

10

Data Science and Machine Learning

10. Discussion

The outcomes demonstrate that even with a minimal dataset and simple matching logic,
meaningful recommendations can be generated. While the current system lacks deep
personalization (e.g., embeddings, user sequence models), its transparency and predictability are
strengths. The recommendation split (skills vs. preferences) adds diversity, which is often
missing in purely collaborative models.

Future iterations could explore:

●​ Embedding-based similarity (e.g., Word2Vec on tags)
●​ User feedback loop (click-through, skip)
●​ Fine-tuned hybrid ranking using XGBoost or LightGBM

11

Data Science and Machine Learning

11. Conclusion and Recommendations

FeedWise proved to be a successful prototype that meets the goal of personal content delivery
using efficient backend design. The project highlights how a practical recommendation system
can be implemented without requiring massive computational resources. Going forward,
integrating real-time interactions and ML-based personalization can turn this system into a
scalable product.

Recommendations:

●​ Include real user feedback for continuous learning
●​ Apply NLP for richer tag analysis
●​ Design a responsive frontend for full-stack usability

12

Data Science and Machine Learning

12. References

●​ Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook. Springer.
●​ Netflix Prize (2009). https://netflixprize.com
●​ Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep Learning based Recommender

System: A Survey and New Perspectives. ACM Computing Surveys.
●​ Official Flask Documentation – https://flask.palletsprojects.com

13

https://netflixprize.com/

Data Science and Machine Learning

13. Appendices

Appendix A – Folder Structure Diagram​
Appendix B – Sample API Response JSON​
Appendix C – Dummy Test Data Used (test_data.py)​
Appendix D – Heroku Logs of Recommendation Requests

14

Data Science and Machine Learning

14. Project Snapshots & Code

Backend Code:

15

Data Science and Machine Learning

post_recomendation.py

"""

KNN-based post recommendation system that balances user skills and preferences

"""

import numpy as np

from sklearn.neighbors import NearestNeighbors

from sklearn.preprocessing import MultiLabelBinarizer

from bson import ObjectId

import re

Import MongoDB collections

from mongo_helper import posts_collection, interactions_collection,

user_profiles_collection

def normalize_tag(tag):

 """Normalize a tag by removing special characters and converting to lowercase"""

 if not tag:

 return ""

 # Replace special characters with spaces and convert to lowercase

 normalized = re.sub(r'[_\-/\s+]', '', tag.lower())

 return normalized

def get_recommended_posts(user_id, limit=10):

 """

 Generate balanced post recommendations based on user skills and preferences

 Args:

 user_id: User ID to generate recommendations for (string or ObjectId)

 limit: Number of posts to recommend

 Returns:

 List of recommended post IDs as strings

 """

 user_id_obj = ObjectId(user_id) if isinstance(user_id, str) else user_id

 # 1. Get user profile and interactions

 user_profile = user_profiles_collection.find_one({"user": user_id_obj})

16

Data Science and Machine Learning

 user_interactions = list(interactions_collection.find({"user": user_id_obj}))

 # If no user profile, return empty list

 if not user_profile:

 return []

 # 2. Extract user skills and preferences

 skills = [normalize_tag(skill) for skill in user_profile.get('skills', [])]

 preferences = [normalize_tag(pref) for pref in user_profile.get('feedPreferences',

[])]

 # 3. Get posts the user has already viewed

 viewed_post_ids = {i['post'] for i in user_interactions if i['interactionType'] ==

'view'}

 # 4. Get all posts except user's own posts and those already viewed

 candidate_posts = list(posts_collection.find({

 "user": {"$ne": user_id_obj},

 "_id": {"$nin": list(viewed_post_ids)}

 }))

 # If no candidate posts, return empty list

 if not candidate_posts:

 return []

 # 5. Calculate direct tag matches for each post

 post_scores = []

 for post in candidate_posts:

 post_id = post['_id']

 post_tags = [normalize_tag(tag) for tag in post.get('tags', [])]

 # Count matches with skills and preferences

 skill_matches = sum(1 for skill in skills if any(skill in tag or tag in skill

for tag in post_tags))

 pref_matches = sum(1 for pref in preferences if any(pref in tag or tag in pref

for tag in post_tags))

 # Calculate a direct matching score (higher is better)

 direct_score = (skill_matches * 5) + (pref_matches * 5)

 # Also check for interaction history (likes)

 interaction_score = 0

17

Data Science and Machine Learning

 for interaction in user_interactions:

 if interaction['post'] == post_id and interaction['interactionType'] ==

'like':

 # Get tags from this liked post to compare with current post

 liked_post = posts_collection.find_one({"_id": interaction['post']})

 if liked_post:

 liked_tags = [normalize_tag(tag) for tag in liked_post.get('tags',

[])]

 # Count matching tags between liked post and current post

 tag_matches = sum(1 for tag in post_tags if tag in liked_tags)

 interaction_score += tag_matches * 3

 # Combine scores

 total_score = direct_score + interaction_score

 post_scores.append({

 'id': post_id,

 'score': total_score,

 'skill_matches': skill_matches,

 'pref_matches': pref_matches,

 'tags': post.get('tags', []),

 'title': post.get('title', '')

 })

 # 6. Sort posts by score (highest first)

 post_scores.sort(key=lambda x: x['score'], reverse=True)

 # 7. Ensure we have a balanced mix of recommendations

 final_recommendations = []

 skill_related = []

 pref_related = []

 # Separate posts into skill-related and preference-related

 for post in post_scores:

 if post['skill_matches'] > 0:

 skill_related.append(post)

 if post['pref_matches'] > 0:

 pref_related.append(post)

 # If user has both skills and preferences, ensure both are represented

 if skills and preferences and skill_related and pref_related:

 # Fill half with skill-related, half with preference-related

18

Data Science and Machine Learning

 skill_count = min(limit // 2, len(skill_related))

 pref_count = min(limit - skill_count, len(pref_related))

 # Add skill-related posts

 for i in range(skill_count):

 if skill_related[i]['id'] not in [p['id'] for p in final_recommendations]:

 final_recommendations.append(skill_related[i])

 # Add preference-related posts

 for i in range(pref_count):

 if pref_related[i]['id'] not in [p['id'] for p in final_recommendations]:

 final_recommendations.append(pref_related[i])

 # If we still need more recommendations, add from the remaining top-scored posts

 remaining_count = limit - len(final_recommendations)

 if remaining_count > 0:

 for post in post_scores:

 if post['id'] not in [p['id'] for p in final_recommendations]:

 final_recommendations.append(post)

 remaining_count -= 1

 if remaining_count == 0:

 break

 # 8. Sort final recommendations by score again

 final_recommendations.sort(key=lambda x: x['score'], reverse=True)

 # 9. Extract post IDs for return

 recommended_post_ids = [str(post['id']) for post in final_recommendations[:limit]]

 # Print debug info

 print(f"\nUser skills: {user_profile.get('skills', [])}")

 print(f"User preferences: {user_profile.get('feedPreferences', [])}")

 print("\nRecommended posts:")

 for post in final_recommendations[:limit]:

 print(f"- '{post['title']}' (Tags: {post['tags']}, Score: {post['score']})")

 print(f" Skill matches: {post['skill_matches']}, Preference matches:

{post['pref_matches']}")

 return recommended_post_ids

Clilent UI Snapshots:

19

Data Science and Machine Learning

Hosted Link: https://mcisysusrs25.github.io/post-recom-system/

20

https://mcisysusrs25.github.io/post-recom-system/

Data Science and Machine Learning

21

Data Science and Machine Learning

22

Data Science and Machine Learning

23

Data Science and Machine Learning

24

Data Science and Machine Learning

25

Data Science and Machine Learning

26

Data Science and Machine Learning

27

	
	
	
	FeedWise: Personalized Post Recommendation System
	
	
	
	
	2.Abstract
	
	
	
	
	
	
	
	
	3.Acknowledgments
	
	
	
	
	
	
	
	
	
	
	4. Table of Contents
	
	5. List of Figures and Tables
	1.​Figure 1: Folder Structure of FeedWise – Page 8
	2.​Table 1: User Profile vs Post Tag Matching Sample – Page 10
	3.​Figure 2: Recommendation Filtering Pipeline – Page 11
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	6. Introduction
	
	7. Literature Review
	8. Methodology
	8.1 Architecture Overview
	8.2 Key Functional Components
	8.3 Recommendation Logic
	8.4 Deployment

	9. Results
	Performance Overview
	Sample Recommendation Output
	Algorithm Effectiveness
	
	
	Scalability

	
	10. Discussion
	11. Conclusion and Recommendations
	12. References
	
	
	13. Appendices
	14. Project Snapshots & Code

